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Abstract. Recently, large-scale pre-trained visual language models have 

demonstrated excellent performance in many downstream tasks. A more efficient 

adaptation method for different downstream tasks is prompt tuning, which fixes 

the parameters of the visual language model and adjusts only prompt parameters 

in the process of adapting the downstream tasks, using the knowledge learned by 

the visual language model during pre-training to solve the problems in the down-

stream tasks. However, the loss of the downstream task and the original loss of 

the visual language model are not exactly same during model training. For 

example, CLIP uses contrast learning loss to train the model, while the 

downstream image classification task uses the cross-entropy loss commonly used 

in classification problems. Different loss has different guiding effects on the task. 

The trend of the accuracy of the visual language model task during training is 

also different from that with the downstream task. The choice of an appropriate 

loss function and a reasonable prompt tuning method have a great impact on the 

performance of the model. Therefore, we pro-pose a more efficient method of 

prompt tuning for CLIP, experiments on 11 datasets demonstrate that our method  

achieves better performance and faster convergence in the downstream task. 

Keywords: Deep Learning ,Visual Language Models, CLIP , Prompt tuning , 

Few-shot learning. 

1 Introduction 

The visual language pre-training model performs well in many downstream tasks, such 

as CLIP [1], ALIGN [2]. An important feature of the visual language pre-training model 

is to map text and images into a common vector space. For example, image encoder 

and text encoder of CLIP model are used to extract features of images and text 

respectively. CLIP model utilizes the idea of contrast learning to maximize the cosine 

similarity be-tween matched image text pairs and minimize the cosine similarity of 

unmatched image text pairs. In contrast, there are usually two methods for adapting 

visual language pre-training models to downstream tasks, fine tuning and prompt tuning 



2 

[3]. Fine tuning pre-training models need to consume a lot of storage and computational 

resources to adjust the parameters of the whole model, while prompt tuning adapts 

downstream tasks by fixing the pre-training model parameters and adding additional 

trainable parameters. So prompt tuning only needs to save the parameters of the pre-

trained model and add a few additional parameters for different downstream tasks [3]. 

The visual language model usually consists of an image encoder and a text encoder 

to extract image features and text features, respectively. Therefore, there are three 

prompt tuning methods, namely visual prompt tuning, text prompt tuning, visual and 

text prompt tuning. For visual prompt tuning, such as VPT [4], a small number of 

learnable parameters will be added to the vision transformer. For text prompt tuning, 

such as CoOp [5], trainable parameters are added instead of manual fixed text prompts 

to find the optimal solution matching the current task in a continuous parameter space. 

For visual and text prompt tuning, such as UPT [6], unified prompt is input to the 

transformer for processing and then shunted to serve as separate prompt for the image 

and text encoders, respectively. The above approach has made significant progress and 

achievements in many downstream tasks, such as few-shot learning. 

However, the above approaches to prompt tuning exploration for visual language 

model lack consideration for downstream tasks. For example, during our replication, 

we found that the trend of the accuracy of the visual language model task during training 

was  different from that with the downstream task. We illustrate this problem with an 

example of CLIP model adapted to downstream task of few-shot learning. In Fig.1 

(left), we showed the accuracy of training CLIP with contrast learning loss. We found 

that when the contrast learning accuracy leveled off, the classification accuracy with 

few-shot learning did not fully converge, which may be due to the different training 

difficulty of different tasks. In Fig.1(right), we showed the change in accuracy when 

training the CLIP model with classification loss of few-shot learning task. We found 

that the classification accuracy was high, but the contrast learning accuracy was low. 

However, a model with good performance should perform well in both. 

 

       

Fig. 1. The trend of accuracy during training CLIP with comparative learning loss(left). 

The trend of accuracy during training CLIP with classification loss(right). 

Therefore, to solve the above problem, we propose a more efficient method of 

prompt tuning called Efficient Prompt Tuning (EPT). With this approach, EPT can be 

better adapted to different downstream tasks and improve the performance on these 
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tasks. The main contributions of our paper are as follows: 1) We propose a new prompt 

tuning method, called Efficient Prompt Tuning (EPT), for downstream task adaptation 

of visual language models; 2) We firstly propose incorporating downstream task loss 

into the prompt tuning process of visual language model; 3)We perform EPT method 

on 11 datasets extensive experiments to demonstrate that it outperforms all other 

existing prompt tuning methods.We hope that our work will stimulate more in-depth 

research in the field of multimodal prompt tuning. 

2 Related work 

At present, prompt tuning methods for visual language models are still a major 

challenge. In general, deep learning-based approaches can be divided into two 

categories: 2.1. Single-modal prompt tuning and 2.2. Muti-modal prompt tuning. 

In this section, related work from both perspectives is presented in detail. 

2.1 Single-modal prompt tuning 

Large-scale pre-trained models can be adapted to downstream tasks by prompt tuning. 

For different downstream tasks, only different prompts need to be designed [3]. 

Compared with fine-tuning pre-trained models, prompt engineering has a higher ac-

curacy with less data and does not need to adjust the parameters of the whole model, 

saving computational resources. While the setting of prompts can greatly affect the 

model performance and it is a time and effort consuming task to design the prompt 

templates manually [5]. The current unimodal prompt tuning methods can be broadly 

classified into two categories: text prompt tuning and visual prompt tuning. 

Prompt tuning originated from natural language processing techniques [3]. Excellent 

prompt tuning methods allow large-scale pre-trained models to effectively adapt to 

downstream tasks, such as text classification. To this end, Shin et al. proposed auto 

prompt based on gradient descent to find the prompt that adapts to the downstream task 

in a discrete space [7]. Soft prompt method proposed by Qin et al. used continuous 

optimizable vector space instead of the traditional hard prompt which were always fixed 

manual templates with single structure, circumventing the problem of poor 

performance on a particular corpus [8]. 

A common approach to image recognition problems in computer vision is to use pre-

trained convolutional models to fine-tune a subset of parameters, such as classifier 

heads or bias terms, in order to achieve an improvement in the accuracy of the model 

for downstream tasks [4]. However, fine-tuning pre-trained model suffered from the 

problem of low accuracy. Moreover, fine-tuning the whole pre-trained model required 

a lot of storage resources and computational resources. There also exist some 

researchers in computer vision who draw inspiration from prompt tuning in NLP. For 

example, visual prompt tuning (VPT) proposed by Jia et al. introduced a small number 

of task-specific learnable parameters into the input space and froze the entire pre-

trained Transformer backbone during training in the downstream tasks [4]. This 

approach reduced the utilization of computational resources because only a few prompt 

parameters need to be tuned. The current experiments demonstrated that VPT 

performed well in the field of few-shot learning. 
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2.2 Muti-modal prompt tuning 

The multimodal prompt tuning technique originated from the popularity of large-scale 

pre-trained multimodal models. The current mainstream visual language models 

usually contain dual-stream and single-stream structured Transformer models, such as 

LXMERT [9], Oscar [10], ViLBERT [11], etc. Oscar proposed by Li et al. improved 

the performance of cross-modal models by increasing the recognition of picture objects 

and text connection between them. However, cross-modal models based on contrast 

learning also performed well in many tasks, such as CLIP [1] and ALIGN [2], which 

extracted features of different modalities by image encoder and text encoder 

respectively and mapped them to the same vector space and then computed the cosine 

similarity of different texts and images, showing excellent performance in downstream 

tasks, such as few-shot learning. 

In the cross-modal domain, Zhou et al. proposed to use contextual optimization 

(CoOp) on text modalities to achieve prompt tuning of CLIP, and obtained excellent 

performance in the field of few-shot learning [5]. Other methods such as CoCoOp [12], 

DualCoOp [13] and ProGrad [14] emerged subsequently after this. However, this 

method does not use prompt parameters on image modality. Unified prompt tuning 

(UPT) [6] proposed by Zang et al. adapted the unified prompt parameters to multimodal 

features using Transformer. And then shunted them and embedded them into text 

encoder and image encoder of CLIP model respectively. The problem with this 

approach is that Transformer structure is huge compared to the prompt parameters. On 

the other hand, the initial aim of prompt tuning was to efficiently adapt pre-trained 

models to downstream tasks using a small number of prompt parameters.  

However, a common problem with the above methods is that the design of the 

prompt tuning method does not adequately consider the impact on downstream tasks. 

Different loss guides the task differently. During training, accuracy trend for the visual 

language model task also differs from downstream tasks. For example, the trend of 

accuracy when the CLIP model is trained under contrast learning loss is not the same 

as that in a few-shot learning task. To solve the above problem, we propose an efficient 

method of prompt tuning called EPT, and we will present our work in detail in Section 

3. 

3 Approach 

After extensive experimental and reproduction work, we propose an efficient prompt 

tuning method for visual language models, called Efficient Prompt Tuning (EPT). Our 

prompt tuning method is based on the CLIP model, so we first introduce the CLIP visual 

language model in section 3.1 Visual and language pre-training. We will then introduce 

prompt tuning method on image encoders in section 3.2 Visual prompt tuning and 

prompt tuning method on text encoders in section 3.3 Text prompt tuning. Finally, to 

solve the problem mentioned above, we will introduce loss fusion methods specific to 

downstream tasks in 3.4 Downstream task-related loss fusion. 
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3.1 Visual and language pre-training 

CLIP [1] consists of an image encoder and a text encoder. The image encoder is usually 

built with ResNet50 [15] or ViT [16] as the backbone, while the text encoder is usually 

built on Transformer [17]. A pair of image-text data (image, text) is input to the image 

encoder and text encoder respectively to extract the corresponding features. For the 

encoded image features and text features, CLIP is applied to maximize the cosine 

similarity of matched image-text data pairs and minimize the cosine similarity of other 

mismatched image-text data pairs. 

To construct the text description, the label of the image is introduced into the manual 

template "a photo of [class]" and then, the encoded features are extracted by the text 

encoder. For the extracted visual features and text features, the final predicted class 

probabilities are expressed as follows: 

𝑝(𝑦 = 𝑖 | 𝒙) =
𝑒𝑥𝑝 (𝑐𝑜𝑠 (𝝎𝒊, 𝒛)/𝜏)

∑ 𝑒𝑥𝑝 (𝑐𝑜𝑠 (𝝎𝒋, 𝒛)/𝜏)𝑁
𝑗=1

 (1) 

For a given image 𝑥 and a text set 𝑦 consisting of 𝑁 image categories, 𝝎𝒊 denote 

the text features extracted by the text encoder, 𝒛 denote the visual features of the image 

extracted by the image encoder.  𝑐𝑜𝑠(∙,⋅) is used to calculate the cosine similarity 

between the text features and the visual features.  𝜏  refers to a fixed temperature 

coefficient. 

3.2 Visual prompt tuning 

VPT [4] was the first means to introduce prompt engineering as a large-scale pre-

trained model, such as ViT [16] for image processing. Simple trainable prompt 

parameters that were simply added were difficult to adapt to complex image 

information and realize the potential of pre-trained visual models. To expand the space 

of input prompt parameters, we apply a fully connected neural network [18] to encode 

high-dimensional prompt parameters, which are subsequently combined with image 

features as the input to the image encoder. After extensive experiments, we found that 

simply adding parameters may cause the model to overfit the training data, so we added 

the dropout layer to the fully connected neural network. The architecture is shown in 

Fig.2. Thus, original prompt parameter of dimension 𝑑1 (𝑑1 can be a large value) is first 

encoded and downscaled by the fully connected neural network to output a prompt 

parameter of dimension 𝑑2 (𝑑2 can be a value that matches the image encoder). Our 

approach takes ViT as the reference model. The prompt tuning method for the visual 

part  is represented as follows, where the green color ∎indicates the parameters that 

can be tuned during the training of the model. The rest of the parameters in ViT are 

fixed. 

 

𝑷𝟏 = 𝐹𝐶𝑁(𝑷𝟎) 

[𝑥1, 𝑍1, 𝐸1] = 𝐿1([𝑥0, 𝑷𝟏, 𝐸0]) 

[𝑥𝑖 , 𝑍𝑖 , 𝐸𝑖] = 𝐿𝑖([𝑥𝑖−1, 𝑍𝑖−1, 𝐸𝑖−1]) 

𝑦 = 𝐻𝑒𝑎𝑑(𝑥𝑘) 

(2) 
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In Equation (2), 𝑷𝟎 represents the initial soft prompt parameters, 𝑷𝟏 denotes the 
soft prompt parameters encoded by the fully connected neural network (FCN).  𝑍𝑖 
represents the feature characteristics computed by the 𝑖𝑡ℎ  transformer layer. In the 
context of ViT , these parameters are integrated prior to the position encoding. Thus, the 
relative localization of  𝑥𝑘 to the prompt is preserved. 

 

Fig. 2. The trend of accuracy during training CLIP with classification loss. 

3.3 Text prompt tuning 

In this section, we introduce text prompt tuning part of EPT. Since the text prompt 

tuning method proposed by CoOp [5] has made great progress, we still use the method 

in CoOp, which use trainable continuous parameters instead of discrete words as 

“prompts”. Prompt parameters and image labels are stitched together and fed into the 

text encoder, so that the corresponding text is described as "[soft] [soft] [soft] [soft] 

[soft] [class]" . Fig.3 shows the detailed architecture of the text prompt tuning, where 

the soft tokens represent the optimizable prompt parameters. 

 
Fig. 3. The architecture of text prompt tuning method practiced in CLIP image encoder. 
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Thus, a given text description is fed into the text encoder to generate the probability 

of a visual feature falling into a category 𝑖 , as shown in Equation (3). The [class] token 

in the prompt 𝑡𝑖  is replaced with the corresponding category of the image 𝑖𝑡ℎ , such as 

"airplane" and "dog". 𝑔(𝑡𝑖) denotes the features extracted by the text encoder from text 

description consisting of optimizable prompt parameters and the label of  𝑖𝑡ℎ image. 

𝑝(𝑦 = 𝑖| 𝒙) =
𝑒𝑥𝑝 (𝑐𝑜𝑠 (𝒈(𝒕𝒊), 𝒛)/𝜏

∑ 𝑒𝑥𝑝 (𝑐𝑜𝑠 (𝒈(𝒕𝒋), 𝒛)/𝜏𝑁
𝑗=1

 (3) 

3.4 Downstream task-related loss fusion 

In this section, we will detail the implementation of loss specific to downstream tasks. 
In CLIP model, the image and text pairs are trained with the goal of contrast learning, 
which is to maximize the cosine similarity of 𝑁 matched image text pairs at diagonal 
positions and minimize the cosine similarity of 𝑁2 − 𝑁 mismatched image text pairs at 
other positions in image text pairs of batch size 𝑁. InfoNCE loss is used in CLIP [1]. 
The loss for image encoder is as follows: 

𝐿𝐼 = −
1

𝑁
∑ 𝑙𝑜𝑔

𝑒𝑥𝑝 (𝑐𝑜𝑠 (𝝎𝒊, 𝒛)/𝜏)

∑ 𝑒𝑥𝑝 (𝑐𝑜𝑠 (𝝎𝒋, 𝒛)/𝜏)𝑁
𝑗=1

𝑁

𝑖=1

 (4) 

The loss of the text encoder 𝐿𝑇  and the loss of the image encoder 𝐿𝐼  are 

symmetric[19]. Loss of CLIP model 𝐿𝐶𝐿𝐼𝑃 is the arithmetic average of the loss of the 

text encoder and the loss of the image encoder, so 𝐿𝐶𝐿𝐼𝑃 can be expressed as： 

𝐿𝐶𝐿𝐼𝑃 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝐿𝑇 + 𝐿𝐼) (5) 

As far as we know, the downstream task loss and the original training loss have 

different effects on the results when adapting the visual language to the downstream 

task. Therefore, in our approach, we integrate the loss of the downstream task into the 

training task of the visual language model. We choose the common classification task 

in few-shot learning as the reference downstream task. The cross entropy loss [20] of 

the classification task 𝐿𝑑𝑜𝑤𝑛 with few shot learning is shown as follows: 

𝐿𝑑𝑜𝑤𝑛 = −
1

𝑁
∑ ∑ 𝒇𝒊,𝒋𝑙𝑜𝑔 (𝒑𝒊,𝒋)

𝑀

𝑗=1

𝑁

𝑖=1

 (6) 

In an image classification problem with batch size 𝑁  and number of classes 𝑀. For 

image 𝑖 , 𝒇𝒊,𝒋 denotes the binary indicator (0 or 1) if class label 𝑗  is the correct 

classification for image 𝑖 . 𝑙𝑜𝑔  denotes the natural logarithm. 𝒑𝒊,𝒋  denotes the 

probability that image 𝑖 is predicted to be class 𝑗 . Therefore, in order to integrate the 

loss of downstream task into prompt tuning of the visual language model, we define the 

loss function of EPT as follows. The parameter 𝛼 in the formula is preset to 0.5. 

𝐿𝐸𝑃𝑇 = (1 − 𝛼)𝐿𝐶𝐿𝐼𝑃 + 𝛼𝐿𝑑𝑜𝑤𝑛 (7) 
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4 Experiments and discussions 

In this section, we first test few-shot learning performance of our method in Section 4.1 

Few-shot learning. To verify the improvement of the model performance by the fused 

loss function, we test the performance of different loss functions on the model 

performance in Section 4.2 Performance of the model with different loss functions. 
4.1 Few-shot learning 

Baselines. We compare our approach with 1) Zero-shot CLIP, which utilizes manually 

constructed prompts and does not use new training data. 2) The single-modal prompt 

tuning approach. This approach used prompt tuning on the text or image modality of 

CLIP model for text and image, respectively. For visual prompt tuning, we chose VPT-

deep [4] as the comparison model. For text prompt tuning, we chose CoOp [5] as the 

comparison model. 3) Multimodal prompt tuning approach. This approach applied 

the prompt parameter on both image and text modalities of the visual language model at 

the same time. We choose UPT [6] as the comparison model. 

Datasets. We follow Zhou et al. [5] to test the model's few-shot learning performance 

using 11 datasets ( ImageNet [21], Caltech101 [22], OxfordPets [23], StanfordCars [24], 

Flowers102 [25], Food101 [26],FGVC-Aircraft [27], SUN397 [28], UCF101 [29], DTD 

[30], EuroSAT [31]) as our benchmarks. For image feature extraction, we used ViT-

B/16 as part of visual prompt tuning. Following Zhou et al. we samely used 1/2/4/8/16 

samples as training data and test data from the entire dataset as evaluation data. We 

recorded the average results of different random seeds as the final results. The results of 

all experiments are shown in Fig.4. All the details of the training follow Zhou et al. 
EPT vs Single-modal prompt tuning approach. From the average results, our method 
beats VPT by 0.59%, 2.03%, 2.43%, and 3.82% at 2/4/8/16 training shots, respectively. 
Our method outperforms CoOp 1.31%, 2.53%, and 4.84% at 4/8/16 training shots, 
respectively. In general, our method has more obvious advantages over CoOp, VPT and 
other unimodal prompt tuning methods. In particular,on the datasets of Food101, 
FGVCAircraft, DTD, EuroSAT, and UCF101, our method has made great progress 
compared with the unimodal prompt tuning method. However, we observe that the 
performance of our method decreases compared to the previous method when the sample 
size is 1. This may be due to the loss of the downstream task addition that causes 
overfitting to some of the data. Also, on some datasets, such as OxfordPet, 
Flowsers102,StanfordCars, the improvement of EPT is less, which may be caused by the 
excessive noise of the data. 
EPT vs Multimodal prompt tuning approach. From Fig.4, we observe that EPT 
achieves approximately the same excellent performance as UPT in most cases, such as 
Caltech101,OxfordPets, EuroSAT . It is worth noting that EPT outperforms UPT on a 
few datasets, such as Food101,FGVCAircraft,DTD,UCF101. From the average results, 
EPT performs essentially the same as UPT at 1/2/4/8 training samples. At 16 training 
shots, EPT outperformed UPT by 1.55% on average on 11 data sets. In addition, EPT 
only needs to adjust the image encoder and text encoder prompting parameters during 
prompt tuning. In contrast, UPT needs to adjust the whole Transformer parameters in 
addition to the image and text modalities in order to achieve consistent performance. In 
general, EPT performs well in the adaptation of few-shot learning due to the addition of 
downstream tasks to guide the visual language model. 
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Fig. 4. Main results over 11 datasets under the few-shot learning setting. 

4.2 Performance of the model with different loss functions 

In this section, to test the performance of the new loss in downstream tasks and exclude 

the effect of the number of dataset categories on the experimental results, we set up two 

different scenarios ( datasets with few categories and datasets with large categories) 

separately.  
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Datasets. For datasets with few categories, we choose RAF-DB dataset [32], which is 

a face expression recognition dataset contains 7 basic expressions (i.e., neutral, happy, 

sad, surprised, fearful, disgusted, and angry). The training data consisted of 12,271 

images and the test data consisted of 3,068 images. For datasets with large categories，
we choose the Food101 dataset. This dataset includes 101 food categories with 101,000 

images. For each category, 250 manually reviewed test images are presented along with 

750 training images. In the two different experimental scenarios, all training images are 

used as training data. All test images are used as test data. 

Loss functions. For the loss function, we choose 1)Contrast learning loss, which is 

usually InfoNCE loss in the CLIP model, which is to maximize the cosine similarity of 

𝑁 image text pairs at diagonal positions and minimize the cosine similarity of 𝑁2 −
𝑁 image text pairs at other positions. The specific implementation is shown in Equation 

5. 2) Loss of downstream task, in CLIP adaptation to downstream task of few-shot 

learning, which is to calculate the cross entropy loss of predicted image labels and real 

image labels. The specific implementation is shown in Equation 6. 3)Loss  fusion, 

which is the loss associated with the downstream task used in the EPT. The specific 

implementation is shown in Equation 7. 

 

Fig.5. Classification accuracy of the model trained on the RAF-DB dataset with different 

loss(left). Classification accuracy of the model trained on the Food101 dataset with 

different loss (right). 

Datasets with few categories. Fig.5(left) shows the influence of different loss in the 

RAF-DB dataset on the classification accuracy during training. We found that the loss 

of contrast learning and the loss of fusion performed similarly. The classification loss 

for the downstream task is slightly worse than the former. It is worth acknowledging 

that the fusion loss of the downstream task used in EPT outperforms. While 

classification loss is significantly weaker than contrast learning loss and loss fusion. 

This suggests that loss fusion can combine the properties of CLIP itself and improve 

the weakness of classification loss. 

Datasets with large categories. Fig.5(right) shows the effect of different loss in the 

Food101 dataset on the classification accuracy during training. In the face of dataset 

containing 101 categories, we found that the loss after fusion outperformed the loss 

from comparison learning and the classification loss from downstream task. At the 5th 

epoch, both the contrast learning loss and the classification loss converged, however 

the fused loss did not converge. This may be the main reason why EPT outperformed 
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UPT, CoOp and VPT. Thus, the fusion loss of the downstream task utilized in EPT still    

performed well in the face of datasets with large number of categories. 

5 Conclusion 

With the rapid expansion and growth of the number of visual language model 

parameters, efficient and computationally efficient adaptation methods are critical for 

pre-trained models for downstream tasks. Our paper provides a novel solution to the 

problem of adapting large visual language models like CLIP from the perspective of 

model structure and design of loss functions. Our study sheds light on the problem of 

loss in downstream tasks that has been overlooked in previous studies and gives a 

solution called EPT. Performance comparable to the effect of previous studies can be 

achieved in EPT by simply adjusting the loss function and adding simple prompt 

parameters. The results show that the fused loss achieve excellent performance in both 

the CLIP model itself and in downstream tasks. Overall, we believe that multimodal 

prompt learning is a promising area of research.We hope that our study will stimulate 

more lively discussions and deeper research. 
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